روش های جذب فلزات سنگین توسط جاذب ها

زمان مورد نیاز برای مطالعه: 3 دقیقه

روش های جذب فلزات سنگین توسط جاذب ها

روش های جذب فلزات سنگین توسط جاذب ها ، يكي از روشهاي حذف فيزيكي يونهاي فلزات سنگين از محيط آبي است. تكنولوژي جذب سطحي به علت انتخاب پذيري بالا، راندمان بالا، اقتصادي بودن و عمليات ساده براي حذف فلزات سنگين مناسب ميباشد. روش جذب سطحي اين مزيت را دارد كه علاوه بر حذف يون فلزي از منبع، آنها را براي استفاده بعدي در اختيار ما قرار ميدهد.  جاذبها به طور گسترده به عنوان فيلتر جداكننده در تصفيه آب و براي حذف آلاينده هاي معدني و آلي از آب آلوده مورد استفاده قرار ميگيرند. از جاذبهاي متداول ميتوان به موارد زیر اشاره کرد:

  • زئوليت
  • كربن فعال
  • خاك رس
  • زيست توده 
  • پليمرهاي زيستي

اما فرايند جداسازي اين جاذبها پس از عمليات جذب آلودگي از پساب دشوار است. در سالهاي اخير مطالعات فراواني بر روي جذب يونهاي فلزات سنگين مانند+ Hg2+,Au3+,Ag2+,Cd2+,Cr2و … توسط جاذبهاي زيستي (قارچها، باكتريها، جلبكها و يا حتي قسمتي از گياهان مانند ساقه يا برگ) انجام شده است. مشاهده شده يونهاي فلزات سنگين به خوبي توسط مكانيسمهاي بيوشيميايي، فيزيكي و يا فيزيكوشيميايي بر روي زيست توده جذب شده اند. علاوه بر اين ميتوان از جاذبهاي زيستي جهت حذف ناخالصي ها، حذف عناصر راديواكتيو و يا حذف عناصر سمي از محيط آبي و همچنين تغليظ محلولهاي حاوي يونهاي فلزي استفاده نمود.

نرخ انتقال جرم بالا، هزينه هاي پايين، دوستدار محيط زيست و عدم توليد پساب ثانويه (بازيابي بالا) از جمله مزاياي استفاده از جاذبهاي زيستي در حذف يونهاي فلزي و غير فلزي از محيط آبي ميباشد. امروزه روش جداسازي مغناطيسي يكي از روشهاي نويد بخش براي پاك سازي محيط زيست ميباشد . زيرا توانايي استفاده براي مقدار زياد پساب در زمان كوتاه را دارد. به علاوه در شرايط پيچيده ي جداسازي (هنگامي كه آب آلوده شامل ذرات جامد باشد) اين روش قابل انجام است. روش جداسازي مغناطيسي داراي سرعت بالايي ميباشد و همچنين بعد از جذب يونهاي فلزي بر روي ذرات جاذب، با قرار دادن ذرات در يك ميدان مغناطيسي دائم يا غير دائم، به راحتي مي توان آنها را از محلول جدا نمود. بنابراين اين روش مشكل جاذبهاي متخلخل (سرعت پايين) و غشاها (پيچيدگي و بازدهي كم) را ندارد. همچنين در اين روش پساب ثانوي نيز توليد نميشود.

با وجود مزيتهاي متعدد در روش های جذب فلزات سنگین توسط جاذب ها ، مشكلاتي نيز وجود دارد، از جمله اينكه، ظرفيت جذب سطحي بالايي ندارد و نسبت به فلزات سنگين گزينش پذير نيست. به علاوه، يونهاي ديگر موجود در آب مانند فسفاتها نيز به خوبي توسط جاذبهاي مغناطيسي جذب ميشوند و حتي براي جذب با فلزات سنگين رقابت ميكنند. از طرفي نانو ذرات مغناطيسي در محيط آبي ناپايدار بوده و انحلال آهن موجب كاهش كارايي سيستم ميگردد، اين مشكل را ميتوان با تثبيت نانو ذرات بر روي يك ماتريس برطرف نمود، اما هزينه بالاي ماتريسها و همچنين محدوديت جذب به دليل محدود شدند نرخ انتقال جرم در اين روش، امكان صنعتي شدن آن را با محدوديت روبرو ميكند.

نمونه ای از  روش های جذب فلزات سنگین توسط جاذب ها

 

در اين نمونه، پوشاندن نانو ذرات مگنتيت توسط چيتوزان مانع انحلال آهن و همچنين آگلومره شدن آنها ميشود. از طرفي باعث افزايش گروههاي عاملي سطح و در نتيجه افزايش ظرفيت جذب نيز ميگردد. در اين مطالعه جذب در pHبيشتر از 2با حداكثر ظرفيت ۲۱میلیگرم بر گرم به صورت گرمازا صورت ميگيرد.

روش های جذب فلزات سنگین توسط جاذب ها

مقايسه دو روش توليد نانو ذرات مگنتيت از طريق خود زيست توده و پروتئينهاي موجود در غشاء باكتريهاي توليد كننده نانوذرات مغناطيسي نشان می دهد نانو ذرات با خاصيت مغناطيسي را توسط روشهاي زيستي توليد نمایند تا با توجه به آزمايشهاي انجام شده استفاده از پروتئينهاي موجود در غشاء باكتريهاي توليد كننده نانوذرات مغناطيسي كارايي بالاتري داشته چرا كه تشكيل يك لايه از پروتئينها روي سطح نانو ذرات گروههاي عاملي سطح را افزايش ميدهد. در اين مطالعه جذب عناصر بر روي سطح اين ذرات بررسي نشده، اما همانطور كه در شكل 3مشاهده ميكنيد، امكان اتصال انواع گروههاي عاملي و يا ديگر تركيبات شيميايي بر روي سطح كامپوزيت توليد شده وجود دارد.

روش های جذب فلزات سنگین توسط جاذب ها

 

در سال 2009براي جداسازي يونهاي+ As3+،Ni2+،Cd2+،Cu2+،Pb2+،Zn2توسط نانو ذرات γ-Fe2O3پوشيده شده توسط پليمر پلي سيستئين آزمايشاتي را انجام دادند كه بازيابي تك تك عناصر نامبرده به بالاي %60رسيده است.

 

نانو ذرات مگنتيت در مركز قارچ پنيسيلين متمركز شده اند و فرايند جذب از طريق سطح قارچ انجام ميشود. تصاوير SEMو TEMاز كامپوزيتهاي بيو نانومغناطيسي نشان داده كه ذرات نانو مگنتيت بر روي سطح رشتههاي زيست توده جذب شدهاند. در اين حالت قارچ مانع از انحلال آهن نانو ذرات و يا حتي تماس نانو ذرات با محيط آبي ميشود.

روش های جذب فلزات سنگین توسط جاذب ها

 

Rate this post

مقالات پیشنهادی

پساب دارویی

پساب دارویی در سالهاي اخير، پساب دارویی بسیار پر اهمیت شده است چراکه باقيمانده هاي دارويي بعنوان يكي از بحث برانگيزترين مسائل در حيطه علوم زيست محيطي مطرح شده است. بيش از 3000 ماده شيميايي مختلف، كه مطابق جدول زیر طبقه بندي شده اند، بعنوان دارو براي انسان، دام، كشاورزي و غيره شناخته شده است. در اين […]

طراحی برکه های تثبیت و لاگون ها

طراحی برکه های تثبیت و لاگون ها در صورت وجود زمین کافی و عدم وجود خطر آلودگی آب های زیر زمینی طراحی برکه های تثبیت و لاگون ها  برای کاهش مواد آلی سمی و فلزات سنگین و کاهش بار آلی فاضلاب ممکن است. برکه های تثبیت را میتوان به دو گروه تقسیم بندی کرد : لاگون […]

زمان ماند سلولی

زمان ماند سلولی یا MCRT زمان ماند سلولی یا MCRT ، زمانی (معمولا بر حسب روز) است که جامدات یا باکتری ها در فرآیند لجن فعال باقی می مانند. زمان ماند سلولی یا زمان ماند جامدات یا SRT نیز خوانده میشود. برای محاسبه دقیق زمان ماند سلولی یا MCRT باید مقدار جامدات معلق (بر حسب پوند) موجود […]

تصفیه خانه فاضلاب چیست

تصفیه خانه فاضلاب چیست

تصفیه خانه فاضلاب : به منظور فهمی از الزام ساختار و مکان یابی تصفیه خانه فاضلاب باید دانست که در همه جوامع بشري زايدات به اشكال مختلفي توليد مي گردند كه در صورت عدم دفع مناسب مشكلات اجتماعي، بهداشتي متعددي به دنبال خواهد داشت. اين زايدات به صورت سه فاز مختلف مايع،جامد يا گاز مي باشند. […]

تصفیه بو فاضلاب

تصفیه بو فاضلاب واحد های فرآیندی یا عملیاتی فاضلاب اگر به طور نامناسب طراحی و نگهداری شوند ، می توانند منبع بوهای مختلف باشند.  مثلاً پیش تصفیه ، تصفیه مقدماتی ، صافی های چکنده ، تماس دهنده های بیولوژیکی چرخان ، لجن فعال عامل تولید بو هستند.  عملیات متعددی می توانند به جلوگیری از بو […]

مواد منعقد کننده در تصفیه فاضلاب

مواد منعقد کننده در تصفیه فاضلاب مواد منعقد کننده در تصفیه فاضلاب مورد استفاده قرار میگیرد شامل تركيبات زیرباشد: ترکیبات فلزاتي مانند آلومينيوم (سولفات آلومينيوم Al2(SO4)3, n یا آلومينات سديم ، ( Na3AlO3)  آهن (سولفات فرو  ،FeSO4  یا  سولفات فريك یا كلرور فريك FeCl3  یا ترکیبات الکترولیت که تعیین مقدار و زمان ماند مواد منعقد کننده در فرآيند های تصفیه […]

پدیده رایزینگ

پدیده رایزینگ يكي از مشكلاتي كه اغلب درتصفيه خانه هاي فاضلاب بروش لجن فعال ايجاد مي شود پدیده رایزینگ یا عدم ته نشيني مناسب لجن و فشردگي آن در حوض ته نشيني ثانويه مي باشد. عدم ته نشيني مناسب لجن را رايزينگ مي نامند كه تعداد زيادي از تصفيه خانه هاي فاضلاب به روش لجن فعال به […]

راكتور تصفیه بي هوازی فاضلاب

راكتور لجن بي هوازي با جريان رو به بالا(UASB) راكتور لجن بي هوازي با جريان رو به بالا متداول ترين سیستم راكتور تصفیه بي هوازی فاضلاب است. تعداد زيادي از اين نوع راكتورها برای فاضلابهاي صنعتي مورد استفاده قرار می گیرند. راكتور UASB يك راكتور رشد معلق با همكاري توده زيستي تثبيت يافته در فرايند […]

تصفیه پساب صنایع غذایی به روش rbc

تصفیه پساب صنایع غذایی به روش rbc اجرای تصفیه پساب صنایع غذایی به روش rbc بهینه می باشد چرا که نیازی پیش تصفیه زلال ساز اولیه یا آشغالگیر ریز و زلال ساز ریز برای جدا سازی جامدات از مایع ندارد.شباهت هاي زيادي بين شرايط طراحي RBC و صافي هاي چكنده وجـود دارد. هر دو سيستم مساحت سطح بيوفيلم زيادي […]

بیوراکتورهای غشایی MBR

بیوراکتورهای غشایی MBR بیوراکتورهای غشایی MBR یا فناوري Membrane bioreactor تركيبي از فرآيندهاي بيولوژيكي و فرآيندهاي غشايي براي تصفيه آب و فاضلاب است.  با حضور غشا در سيستمهاي تصفيه فاضلاب ديگر نيازي به حوضچه هاي ته نشيني نيست و فضاي لازم براي سيستم تصفيه كاهش پيدا ميكند كه اين بزرگترين مزيت استفاده ازسيستمهاي MBRبه جاي لجن فعال متعارف است.  حذف […]

نظرات کاربران

ارسال دیدگاه
  • دیدگاه های ارسال شده توسط شما، پس از تایید در وب سایت منتشر خواهد شد.
  • پیام هایی که حاوی تهمت یا افترا باشد منتشر نخواهد شد.
  • مجموع دیدگاهها: 0
  • در انتظار بررسی: 0
  • انتشار یافته: 0

هنوز دیدگاهی ثبت نشده است.

سوالی دارید؟ منتظر تماس شما هستیم

برای دریافت مشاورۀ رایگان، همین حالا با کارشناسان ما تماس بگیرید